
Multi-Platform Software Development
Using the Model-View-Controller Design Paradigm

Mark Wittenberg, Novell, Inc.

Abstract

Producing a program for more than one platform (such as Macintosh and Windows) is difficult and
resource expensive, and it is difficult to maintain functional equivalence between the versions.
Engineering, quality assurance, documentation, and maintenance efforts increase in proportion to
the number of supported platforms. Programs with a Graphical User Interface (GUI) make this
situation worse. To solve this problem we present an architecture that reduces the engineering
work required to build multi-platform applications, guarantees functional equivalence between
platforms, encourages users to form the same conceptual model of the application on all platforms,
provides a firm basis for implementing scripting, allows a native GUI for each platform, and
simplifies inter-application communication across platforms. The architecture merges the Model-
View-Controller and the Client-Server paradigms.

Contents
• Introduction
• Motivation
• Solution — Distributed MVC Architecture
• Enhanced Client-Server Architecture
• Benefits
• The Conceptual Model
• The Model-View-Controller Triad
• Distributed MVC Revisited
• Scripting
• Functional Specification
• User Interface Specifications
• Testing
• Remote Debugging
• Client-Server Communications
• Peer-to-Peer Communications
• Single-Platform Development
• Limitations
• Summary
• Acknowledgements
• Bibliography

Introduction
It is an increasingly common requirement that a
company provide substantially the same application on
several platforms; Windows and Macintosh are common
today, and Presentation Manager and the X Window
System are gaining popularity. DOS does not provide
much in the way of graphical interfaces, but there are a
very large number of DOS machines in the world today,
so applications that are usable in a non-graphical
environment can substantially increase their market by
providing a DOS version.

Writing an application that is completely portable
between any two of these platforms, let alone all of
them, is a formidable task, especially if one desires to
provide a state-of-the-art user interface on each one. On
the other hand, rewriting the application for each
platform is expensive and error prone. In addition, a
developer is subject to implementing subtly (or not so
subtly) different applications on each platform.

A successful product needs to be adequately tested and
documented; implementing an application from scratch
for each platform requires that it be retested as well,
and increases the chance that the documentation will
have to be redone completely. All of this is not only
expensive, but also increases the time it takes to get the
product to market.

Motivation
Applications that run well on a number of platforms
enjoy a large potential market, but they may not be able
to exploit that market unless they can be brought
quickly to market, at a reasonable cost.

Several studies have shown [Mey 90] that the major
software expense is not developing a product, but in
maintaining it. Maintenance consists of fixing bugs,

adapting to new requirements, adding features, and
porting to new platforms.

Designing for portability and improvability drastically
reduces maintenance costs; only part of the application
needs to be changed when it is time to release the next -
version of your product, or to release the current
version on a new platform.

Building an application that compiles and runs
unchanged on every platform is extremely difficult; the
organizational issues, such as maintaining a single copy
of the source across platform-specific develop-ment
teams, are as difficult as the technical ones.

In many applications it makes sense for multiple users
to share access to the same data; if so, you need to
provide shared access from different platforms. You
might want to support real-time updates of views of
shared data; that is, if several users are viewing the
same data simultaneously, all of them would
immediately and automatically see any change made by
any one of them.

Summary of major needs:

• Support the application on all popular platforms.

• Allow data to be shared concurrently from all
platforms and provide real-time updating of all views
of shared data.

• Ensure non-duplication of effort by testing and
documentation.

• Ensure that the applications share the same
conceptual model. The conceptual model is the
user’s explanation for how the program works.

Solution — Distributed MVC Architecture
The architecture we present here does not solve all of
the problems we listed, but it does give a framework for
working on them.
We have combined the Client-Server architecture with
the Model-View-Controller paradigm, and explicitly
recognize the importance of the Conceptual Model; we
call it the Distributed MVC architecture. A major
accomplishment of this architecture is ensuring the
integrity of the system’s conceptual model across
implementation platforms. Later sections will explain
the Model-View-Controller paradigm and Conceptual
Models in detail.

Distributed MVC separates the user interface from the
application semantics to facilitate implementing
multiple user interfaces; it does this by passing

messages between the user interface on the client and
the semantic model on the server.

A Client-Server architecture splits an application into a
server which provides a service to a number of clients.
Each client connects to the server, issues service
requests, and receives responses. Clients and Servers
typically reside on different machines, although this is
not a requirement. The Client-Server architecture
allows the (presumably) resource-intensive server to
run on a large fast computer while allowing the clients
to run on smaller, more accessible workstations or
departmental computers. It also allows centralized
management of the server, a useful setup if a large
number of clients are involved. Typical Client-Server
programs are Electronic Mail systems and Database
systems.

The Model-View-Controller paradigm decomposes a task
into a Model, which implements the semantics of the
task, a View, which displays the state of the model to
the user, and a Controller, which the user manipulates
to modify the state of the model. Our adaptation splits
the application into a Client and a Server, moves the
Model to the Server and adds a Client-Model to provide
the same abstraction of a Model to the Views and
Controllers.

Enhanced Client-Server Architecture
What does the Distributed MVC architecture add to the
Client-Server architecture?

Distributed MVC provides a higher level of abstraction
to the client: the server is tailor-made to the
specification of the client. Database Management
System servers, for example, provide generic data base
services; application-specific semantics (such as the
definition of tables and the semantics of updates) are
left to the application. In a Distributed MVC design, the
server would be application-specific; for example, a
Personnel Database server. The Personnel Database is
itself a client of a DBMS, but presents a higher level of
abstraction to the rest of the program.

Coad and Yourdon [Coa 91] divide the design areas into
four components, shown in the center row of the Figure
1; the upper and lower rows show the location of those
components (client or server) in the Client-

Server architecture and in our Distributed MVC
architecture. Because the conceptual model is so
important, we move the Problem Domain Component
(that is, the part that implements the application-
specific semantics) from the client (in the Client-Server
architecture) to the server. This sharing of the problem
domain ensures that the Design Model is the same on
all platforms; the user’s Conceptual Model should
therefore be the same as well.

By splitting the user interface into the view and
controller components, we make scripting and testing
easier, and make remote debugging simpler. Scripting,
Testing, and Remote Debugging are discussed later.

Human
Interaction
Component

Problem
Domain

Component

Task
Management
Component

Data
Management
Component

Client
View

Controller

Server
Model

Server
Connection

Tasks

Server
DBMS

Distributed MVC Components

Client-Server Design Components

Mapping Distributed MVC Components to OOD

Client
User

Interface

Client
Application
Semantics

Server
Connection

Tasks

Server
DBMS

Figure 1
Benefits
• We ensure that all of the applications are

functionally equivalent, as the Model implements all
of the functionality of the program. We don’t
guarantee that the user interfaces are equally
usable, only that all the functionality of the system
resides in the Model.

• Testability is enhanced because the functionality
needs to be tested only once. Of course, the user
interfaces must still be tested on each platform.
We’ll have more to say about testing later.

• Usability is enhanced because the user will form the
same conceptual model as to how the application
works, regardless of the platform being used.

• Documentation is made somewhat easier, as it can
be separated (logically, if not actually) into
Functionality and How-to-Use sections. The
Functionality section is the same for all platforms.

• We provide a firm basis for implementing scripting.
Because the Model implements all of the
application’s functionality, and is accessible only by
passing requests and receiving replies, scripts are
implemented simply by saving and replaying the
message streams flowing into and out of the server.

• We can provide real-time updating of shared views
by adding the views as dependents of the model; if
the model changes, it will send its dependents an
update message, and the views can query the model
for the new data. This mechanism works
transparently for all client platforms.

• The program designer is forced to separate the
design into two parts: the Functional Specification
which describes the Model, and the User Interface
Specifications (one or more per platform), which
describe the user interfaces. This two-part design
helps to separate what the program does from how
the user makes it do that, which is an aid in
implementation, debugging, and technical support.
An important implication is that a bug that appears
in only one implementation must be in the View-
Controller code on that platform; it can’t be in the
Model code, which runs on the server.

• The View-Controller code for each platform can be
done by separate teams at the same time. There is
no need to wait for the first implementation and
then have each team “port” the code to their
platform. That is, people need not try to discover for
themselves what part of the code implements the
functionality, port that, and rewrite the user
interface.

The Conceptual Model

A conceptual model1 is a person’s explanation for how a
thing works. Donald Norman says “These models are
essential in helping us understand our experiences,
predict the outcomes of our actions, and handle
unexpected occurrences. We base our models on
whatever knowledge we have, real or imaginary, naive
or sophisticated … The real point … is that everyone
forms theories (mental models) to explain what they
have observed.”

Norman points out that there are three conceptual
models: the design model, the user’s model, and the
system image. See Figure 2.

“The design model is the conceptualization that the
designer has in mind. The user’s model is what the user
develops to explain the operation of the system. … [The]
user and designer communicate only through the
system itself: its physical appearance, its operation, the
way it responds, and the manuals and instructions that
accompany it. Thus the system image is critical: the
designer must ensure that everything about the

1See [Nor 88].

product is consistent with and exemplifies the operation
of the proper conceptual model.”2

Designer

Design Model

User

User's Model

System

System Image

Three Aspects of Mental Models

Figure 2

The Model-View-Controller Triad

MVC3 is a problem decomposition paradigm, originally
developed in Smalltalk-80. In it, the designer factors an
application into three pieces:

• Model: the part that represents the model of the
underlying application problem domain.

• View: the part that presents the model to the user.

• Controller: the part that allows the user to modify
the model.

The three pieces communicate by sending messages.
The Controller sends messages to the Model to effect a
change; the Model sends messages to the View to
change the display. Adopting the point of view of the
Model, we shall call the message stream flowing to the
Model the Input Stream, and the message stream
flowing from the Model the Output Stream.

In practice, the Controller may also send messages to
the View (such as a message to change window size),
the View may send messages to the Model (such as a
message asking for the current state of the model), and
the Model may send messages to the Controller (such as
a message that its state has changed).

The Model generally maintains a list of dependents, who
should be notified when it changes state. The View is
always a dependent, and the Controller and other
Models may also be dependents. The list of dependents
is just a list; ideally the Model knows nothing about its
dependents except that they need to be notified when
the Model has changed state.

Figure 3 shows the main MVC components. The heavy
black lines indicate the major message flows, the
dashed lines indicate the minor message flows, and the
gray lines indicate attachments to either physical
devices or software components outside of the design
domain, such as an operating system.

In Smalltalk-80 the programmer designs Classes to
implement the MVC triad and instantiates Objects to
effect them. Typically there will be a number of MVC
triads in an application, corresponding to the number of
“application domains” encompassed. For example, a
CAD system might have a document editing triad, a
memo (text) editing triad, a database (filing) triad, a
design-consistency checking triad.

Although decomposing an application into a number of
Models is useful, we don’t restrict ourselves to an
Object-Oriented design in this paper. For simplicity,

2The diagram and the quotes in this section come from [Nor 88], because I couldn’t have said it better myself.
3Borrowed from Smalltalk. A good description can be found in [Kra 88].

we will mainly address the single-model case. However,
the architecture can be extended to the multiple-model
case.

It is important to note that there may be several View-
Controller pairs associated with one Model. A straight-
forward example is in a text editor. Some people like
keyboard commands and some people like mouse-based
commands. Some people4 like some of each, depending
on the function to be performed. This situation is easy
to handle with a text-editor Model, a text-editor View,
and two Controllers: a keyboard Controller and a mouse
Controller. Either one or both Controllers can be active
and sending commands to the Model; the Model sends
the results to the View to be displayed. In this case the
two View-Controller pairs share the same View, but this
need not be the case.

Controller

Model

“Real World”

Model-View-Controller Design

View

Display
Screen

Mouse
Keyboard

Figure 3

4Me, for example.

Distributed MVC Revisited
We can now explain the Distributed MVC architecture
more fully. Figure 4 shows the application split into the
client and server pieces. The Model has been moved to
the server to ensure the integrity of the system’s
conceptual model, and a new Model has been created in
the client to implement the system’s semantics by
passing requests to the server model. Each client’s
model maintains a local list of dependents, and is itself
a dependent of the server model.

Distributed MVC is transparent to the Views and
Controllers; the client Model transparently passes View
and Controller messages to the server. In particular, the
Controllers and Views do not maintain any notion of the
network address of the server, as they are not aware
that communication is taking place over a network. Of
course, the client’s Model must somehow find the
server at initialization, and there is presumably some
sort of user interface for specifying a server. Therefore,
one View-Controller pair knows about servers, but it
will not participate in the main function of the
application.

In Distributed MVC, the Model defines the System
Image and the way the System Image responds. Thus,
half of this critical component of the user’s
understanding of the application is shared with the
other implementations. The other half – the
documentation and the physical appearance – is not
shared (although part of the documentation can be), but
the separation of the user interface from the
functionality helps to focus the designer’s attention on
the part particular to each platform.

This architecture:

• Implements the functionality of the application once,
in the server.

• Presents a uniform programming interface to every
client (that is, to the client’s Model).

• Separates the design of the user interfaces from that
of the functionality.

• Divides the user interface into display and
manipulation components and allows them to be
interchanged.

• Reduces order dependencies in the development
process. See the Testing section for details.

“Real World”

Distributed MVC Design

Server

Model

Client

Input Stream Output Stream

Controller

Model

View

Display
Screen

Mouse
Keyboard

Figure 4

Scripting
Scripting is the ability to record and playback a series
of commands, and to record the results. It differs from a
macro facility5 by recording commands, not keystrokes
and mouse clicks, and by recording the results as well.

For example, a script command might be Send “Get
Info” to the current selection, whereas the equivalent
macro recording might be Click at screen position
{h=67, v=17} and drag to {h=71,v=78}. The reader (of
the macro file) must already know that “Get Info” is a
menu item somewhere near the described location.

Macros are notorious for being highly dependent on the
size of menu titles, the position of items in a menu, the
size of the screen, the number of items drawn in the
window, the speed of the CPU, the phase of the moon,
and so on. As such, they are completely non-portable
between platforms (indeed, they are generally non-
portable between versions on the same platform) and
are extremely hard to read or modify.

Macros also cannot test functionality separately from
the user interface, and so cannot discriminate user
interface bugs from functional bugs. Also, they cannot
be used in regression tests6 to detect bugs
automatically, as they do not capture output When
running a test, something should probably happen as a
result of executing a command, but what? In the macro
version the tester has no way of knowing. In the script
version, a little later there should be a command
describing the expected response, such as Get “Size is
103,476 bytes, Location is Ann Arbor.” A simple utility
to print the differences in a pair of text files suffices to
automatically detect bugs.

Either the input or the output stream can be recorded
(a Tap), synthesized (an Injection), or diverted (a
Siphon). There are four useful configurations of the
message streams, shown in Figure 5:

Type Model Input Model Output
User Live Live
Replay Inject Live
Record Tap Tap
Batch Inject Siphon

Figure 5

The application is normally run in User mode, but the

user will sometimes wish to Record his or her actions
and later Replay them. Batch operations would
normally be used for regression testing, but for many
applications batch operations would be a useful user's
mode as well. A slight modification also allows remote
debugging (see the Remote Debugging section).

Functional Specification
A functional specification describes what the application
does, not how it does it or how the user interacts with
it. If you have formalized your definition of the product
(perhaps with Abstract Data Types,7 Push-Down
Automata,8 or an axiomatic system), then both
implementing the model and writing a test suite is
simplified.

In the real world, such formal product specifications are
not common, but the MVC decomposition provides a
reasonable alternative: specify every message that can
be sent to the model and the set of possible responses.
The set of legal sequences of messages defines a
language, so you should consider writing a formal
definition of that language9 (i.e., a grammar). This is not
a complete formal definition of the application, of
course, since the semantics are missing. However, it is
sufficient for the quality assurance department to
generate a test plan.

The specification of the set of messages and responses
is necessary whether or not a more formal specification

5That is, a facility that records the user’s actions, not one in which the user writes macros explicitly – a “Read My Lips” tool.
6Regression testing is the process of repeating a subset of tests after fixing previously discovered bugs. The tests that revealed the
bugs and tests that apply to functions affected by the fixes are repeated.
7A good definition can be found in [Mey 90].
8See [Aho 72], for example
9See your favorite language theory text, such as [Aho 72] or [Aho 86].

is provided; the messages are the relevant entities for
implementation, documentation, and testing. If you
provide a more formal specification, someone should
verify the message specification against the formal
specification.

Note that the messages should not contain any text; this
requirement is important in order to support the
international market. Your application should support
clients in different languages simultaneously, which
implies that only the client user interfaces should
generate text.

User Interface Specifications
There should be a separate user interface specification
for each user interface, detailing how the user issues
commands and sees results. The first specification
should be for the scripting language so that QA can
start writing tests.

The GUI specifications should specify which actions in
the Controller generate which messages, and should
detail the actions of the View receiving each message.
For clarity, you may want to repeat the semantic intent
of each Controller message (already described in the
Functional Specification) However, the message stream
constitutes the most important information required by
both the programming team and the QA team.

The technical documentation department has different
requirements, because the message stream is not
significant to the user except for providing an explicit
description of the conceptual model supported by the
application. Many user’s manuals benefit from a Theory
of Operation section, which can derive directly from
the message definitions.

If the scripting facility is available to customers, then
the script language should be documented with a formal
language definition so the documentation team can
accurately describe it.

Testing
Let’s assume that your application needs to run on DOS,
Windows, OS/2, Macintosh, and the X Window System.
How are you going to test all five versions? In our
architecture, you first write the Model, running on the
server, and then write the View-Controller pairs,
running on the clients.

The first View-Controller pair to implement is the
scripting mechanism. The View receives a stream of
messages and generates a human-readable text

describing them. The Controller takes text describing a
stream of messages (in the same language that the View
generates), parses it, and sends the resulting messages
to the Model.

In the meantime, Quality Assurance can start writing
test scripts. As soon as this first MVC triad is complete,
testing can begin, while engineering goes on to write
the “real” Graphical User Interfaces (GUIs), and of
course, to fix the bugs in the model that are found by
QA.

One of the interesting benefits to this architecture is
that QA can test a GUI piecemeal: the scripting
controller and the model can be hooked up to a GUI
view; you can type commands into the controller and
examine the behavior of the view.

Conversely a GUI controller can be hooked up to a
scripting view, and be debugged by examining the
output messages.

In addition to providing the user with a batch facility,
scripting also provides a platform-independent test bed.
The logical separation of the View from the Controller
allows us to feed the Controller portion of a script into
the Model, but hook the output stream to a live View.
We can then visually verify the appearance of the View.10
Any platform with a working Controller can generate
the input script, so long as there is also a working
model. Unlike macros, scripts are platform-
independent: a script generated on one platform can be
used on any other platform unchanged.

Scripting also allows easy regression testing of the
Model; given valid input and output scripts for a test, all
that a regression test requires is to feed in the input
script, save the output stream, and compare the new
output stream with the saved known good one. If they
are the same, all client applications that have not been

10A speed control on the Script Controller would be useful.

modified are known to be correct, and do not need
retesting.

Regression testing of the Controller and of the View is
harder. In the former case you need to generate the
same user actions. and compare the output stream with
the saved output. Macros could be useful here, in spite
of their problems. In the latter case, you feed the saved
input (i.e., the input stream) to the View and visually
compare the results.

Remote Debugging
We have shown how to use the message stream to
design a batch system (scripting) and a graphical user
interface. The message stream can also provide remote
debugging. By tapping into the output stream of a
remote customer, you can see the symptoms the user
encounters; by tapping into his or her input stream you
can test the system, and the customer can see the
results at the same time. Remote debugging is possible
even if you are running on one platform and your
customer is running on another. Of course, in this case,
if you don’t observe the bug that the customer is
encountering, then you’ve just localized the bug to the
user interface of the client’s platform. Supporting dial-
in lines may be a good idea for this reason even if you
think that dial-in lines are too slow for normal use. You
should provide a security mechanism so that your
customers can control who can tap into their systems.

Similar functionality is provided by programs such as
Timbuktu11 for the Macintosh and Carbon Copy12 for
DOS, although they work differently. These programs
work by emulating the target workstation’s display
device at the controlling workstation’s display, and
passing input device actions from the controlling
workstation into the target workstation.

While useful, they suffer from several generic problems:

• The “messages” being passed are at a much lower
level of abstraction than are the Distributed MVC
messages, including mouse movements as well as
typing corrections. Therefore, they do not allow a
controlling workstation to be of a different kind than
the target. They can also suffer from slow response
time, due to the amount of unimportant data they
must transmit.

• They can’t save the meaningful portion of the output
stream to a file for later analysis, and they can’t
submit saved files as input.

• The target workstation must have previously
installed the emulation software.

Client-Server Communications
Splitting an application into client and server pieces
implies that the client and server can communicate:
they must have a common communications medium and
common protocols. For Macintosh clients AppleTalk™ is
a reasonable protocol choice since it is built in to every
Macintosh, but TCP/IP may also be a viable choice.
TCP/IP is the most common protocol in the UNIX™
world. For DOS, Windows, and OS/2 clients, the
NetWare protocol IPX/SPX is probably most common,
with NetBIOS and TCP/IP in second and third place,
respectively.

These protocols provide only the foundation for the
required communications facility. Architecturally, the
client and server don’t send byte streams or packets
back and forth; they send messages. A message
protocol is therefore needed. System 7.0 provides
AppleEvents on the Macintosh, which would serve
nicely, but it is not currently supported on other
platforms.13 Transport Independent Remote Procedure
Call (TIRPC)14 may also be sufficient, but is not
generally available. If neither of these is sufficient for
your needs, you may have to devise and implement your
own higher-level protocol.

Note that the physical medium and the transport
protocol could be different for every client platform so

11by Farallon Computing, Inc., Emeryville, California.
12by Meridian Technology, Inc., a subsidiary of MicroCom, Inc.
13UserLand, Inc., in Palo Alto, California has recently announced support for a subset of AppleEvents on Macintosh System 6.0.x.
14See [ATT 90] for a definitive reference.

long as the server supports all the media and protocols.
The message protocol can also be different, but the
server is then required not just to support all of them,
but also to translate between them.

Peer-to-Peer Communications
If your application needs to support peer-to-peer
communications among your clients, your message
protocol needs to support discovering, identifying, and
targeting other clients, and your server model must
support routing peer messages to the target client.
Some sort of broadcast mechanism may also be
desirable. As all clients are connected to the server,
discovering other clients can be done by simply
querying the server, but you may have to handle
multiple servers in a network.

Single-Platform Development
The Distributed MVC architecture combines the Model-
View-Controller paradigm with the Client-Server
paradigm. It was designed to support applications that
need to run on multiple client platforms, but it is still a
useful architecture even for applications that will never
to run on more than one platform. The conceptual
separation of the user interface from the semantic
model provided by MVC, and the flexible
communications provided by the client-server
separation are useful even on a single platform.

Limitations
• If your application has strict real-time requirements,

the communication overhead and the unpredictable
server response time may be intolerable.

• If your application is mostly user interface, you may
find that the added complexity of the client-server
model does not provide sufficient benefit.

• However, a very resource-intensive model could
become a performance bottleneck if many clients
share the same server; a distributed server model
may be required to provide acceptable performance.

• If your target environment is an internetwork
containing many servers, and concurrently shared
data or peer-to-peer communications is very
important, this architecture will not satisfy your
needs unless you add server-to-server
communications to the Server Model.

Summary
We have presented the Distributed MVC architecture,
which supports building functionally identical
applications running on different platforms. The
architecture combines the Client-Server architecture
with the Model-View-Controller paradigm to provide the
advantages of both, and emphasizes the importance of
the Conceptual Model.

Applications may take full advantage of whatever
graphical interface is available on each platform, or
they can have a plain textual interface, but the user
should form the same conceptual model of how the
program works in each case.

Distributed MVC provides strong support for functional
(command) scripting which, if implemented, makes
Quality Assurance much easier.

Applications which need to support concurrently shared
data access from multiple disparate clients, with real-
time display updates, can do so without an inordinate
amount of work.

The separation of the user interface from the
implementation of the functionality results in reduced
documentation effort and the ability to increase
parallelism in development. Providing the same look
and feel on each platform is simplified because the
conceptual model is shared.

While Distributed MVC is not a panacea and is not
applicable to all product markets, this paradigm can
provide substantial benefits for a large number of
applications.

Acknowledgements
The Distributed MVC architecture developed from a
number of design discussions with Elizabeth Brennan
and Mike Russell. Robin Anderson joined them in
reviewing this paper; I wish to thank all of them for
their help.

Bibliography
[Aho 72] The Theory of Parsing, Translation, and

Compiling, Volume 1: Parsing, by Alfred V.
Aho and Jeffrey D. Ullman, Prentice-Hall,
1972. ISBN 0-13-914556-7.

[Aho 86] Compilers: Principles, Techniques, and Tools,
Alfred V. Aho, Ravi Sethi, and Jeffrey D.
Ullman, Addison-Wesley, 1986. ISBN 0-201-
10088-6.

[ATT 90] AT&T UNIX System V Release 4
Programmer’s Guide: Networking Interfaces,
Prentice-Hall, 1990.

[Coa 91] Object-Oriented Analysis, by Peter Coad and
Edward Yourdon, Yourdon Press/Prentice-
Hall, 1991. ISBN 0-13-629981-4.

[Kra 88] A Description of the Model-View-Controller
User Interface Paradigm in the Smalltalk-80
System, by Glenn Krasner and Stephen Pope,
ParcPlace Systems, August 1988.

[Mey 90] Object-oriented Software Construction, by
Bertrand Meyer, Prentice-Hall, 1990. ISBN 0-
13-629049-3.

[Nor 88] The Psychology of Everyday Things, by
Donald Norman, Basic Books, 1988. ISBN 0-
465-06700-3.

